Телевидение — передача звука и изображения на расстояние. Телевизоры на ЖК (LCD) панелях. Схема, описание Как устроен телевизор для детей

23.03.2024 Windows 8

LCD (Liquid crystal display) или ЖК (жидкокристаллический) телевизор, как их называют в народе - это телевизор с ЖК дисплеем и ламповой подсветкой. Жидкокристаллический , означает, что сам дисплей (монитор) сделан на основе жидких кристаллов

LCD TFT (англ. Thin film transistor - тонкоплёночный транзистор) - разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами . Усилитель для каждого субпикселя (элемента матрицы) применяется для повышения быстродействия, контрастности и чёткости изображения дисплея

  • Немного истории:
  • Жидкие кристаллы впервые были обнаружены австрийским ботаником Райнитцером в 1888 г., но только в 1930 -м году исследователи из британской корпорации Marconi получили патент на их промышленное применение, однако, слабость технологической базы не позволяла в то время активно развивать это направление.

    Первый настоящий прорыв совершили ученые Фергесон и Вильямс из американской корпорации RCA . Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 г., корпорация RCA продемонстрировала прототип LCD-монитора - цифровые часы . Первый в мире калькулятор - CS10A был произведен в 1964 году корпорацией Sharp , она же, в октябре 1975 года, выпустила первые компактные цифровые часы с ЖК дисплеем. К сожалению, фоток не нашёл, а вот эти часы и калькулятор - ещё помнят многие

    Во второй половине 70-х начался переход от восьмисегментных ЖК индикаторов к производству матриц с адресацией (возможностью управления) каждой точки. Так, в 1976 году, компания Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

    Следующий этап в развитии LCD-технологии начался в 80-х годах, когда в устройствах стали применяться STN-элементы с повышенной контрастностью. Затем на смену им пришли многослойные структуры, позволяющие устранить ошибки при воспроизведении цветного изображения. Примерно тогда же появились активные матрицы на базе технологии a-Si TFT . Первый прототип монитора a-Si TFT LCD был создан в 1982 году корпорациями Sanyo , Toshiba и Cannon , ну а мы, в это время, любили играться вот такими игрушками с ЖК дисплеем

    Сейчас ЖК дисплеи практически полностью вытеснили с рынка кинескопные телевизоры, предлагая покупателю любые размеры: от переносных и небольших "кухонных", до огромных, с диагоналями более метра. Ценовой диапазон так же весьма велик и позволяет каждому подобрать телевизор по своим потребностям и финансовым возможностям

    Схемотехника LCD телевизоров гораздо сложнее, чем у простых кинескопных ТВ: миниатюрные детали, многослойные платы, дорогостоящие блоки... Вот, кому интересно, телевизор с ЖК панелью без задней крышки, а если снять специальные защитные экраны, можно будет увидеть другие участки схемы, только лучше этого не делать, оставьте это мастерам

  • Устройство и принцип работы:
  • Работа ЖК дисплея (ЖКД) основана на явлении поляризации светового потока . Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Этот эффект называется поляризацией света .

    Если совсем по простому , представьте "свет" в виде маленьких круглых шариков, если на его пути поставить сетку с продольными вырезами (поляризатор), то, после неё, из "шариков" останутся только плоские "блинчики" (поляризованный свет). Теперь, если вторая сетка будет с такими же продольными вырезами, блинчики смогут "проскочить" через неё и "светить" дальше, если же вторая сетка будет иметь вертикальные прорези, то световые горизонтальные "блинчики" не смогут пройти сквозь неё и "застрянут"

    Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами

    Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса ), чаще пластикового, с металлической рамкой жёсткости.

    Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

    Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной, хотя уроверь потерь - немалый.

    Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры, степенью прозрачности можно управлять, изменяя приложенное напряжение.

    В качестве источника света (подсветки ЖК-матрицы) используются флуоресцентные лампы с холодным катодом (называются они так, потому что катод, испускающий электроны (отрицательный электрод) внутри лампы необязательно нагревать выше окружающей температуры, чтобы лампочка зажглась). Вот так может выглядеть лампа для LCD телевизора, на правом фото - "ламповая сборка в работе" для телевизора с большой диагональю ЖК-дисплея:

    Сами лампы (белого яркого свечения) располагаются в специальных корпусных фиксаторах , позади их - отражатель , для уменьшения потерь светового потока. Для того, чтобы ЖК-матрица засветилась равномерно (а не полосато, как лампы установлены ), перед экраном находится рассеиватель , который равномерно распределяет световой поток по всей своей площади. К сожалению, в этом месте так же происходит немалая потеря "яркости" свечения ламп

    Современные ЖК-матрицы имеют достаточно хороший угол обзора (около 160 градусов) без потери качества изображения (красок, яркости), самое неприятное, что на них можно увидеть - это вот такие битые пиксели , однако, учитывая то, что их размер очень мал, один-два таких "прогоревших" пикселя не сильно будут мешать просмотру фильмов и передач, а вот на экране монитора - это уже может быть достаточно неприятно

  • Преимущества и недостатки:
  • По сравнению с кинескопными телевизорами, ЖК-панели имеют отличную фокусировку и чёткость, нет ошибок сведения лучей или нарушения геометрии изображения, экран никогда не мерцает, они легче и занимают меньше места К минусам можно отнести слабоватую (по сравнению с кинескопными) яркость и контрастность, матрица не такая прочная, как экран кинескопа, набор цифровых тормозов и глюков при аналоговом или слабом сигнале, а так же плохой обработке исходного материала

    Основой такого телевизора (или монитора) является жидкокристалическая матрица. Это две тонкие стеклянные пластины, между которыми и распологаются жидкие кристаллы.

    Основное свойство этих кристаллов- они умеют изменять свою прозрачность под внешним воздействием.

    В данном случае внешнее воздействие оказывает электрический ток. Так как сами кристаллы свет не излучают, то для того чтобы увидеть на экране матрицы полученную картинку, требуется внешняя подсветка. Посветка осуществляется обычно при помощи ламп или светодиодов. Основные требования к этим осветительным приборам- это их температурная стабильность и низкая рабочая температура.

    Кроме этого еще требуется иметь возможность регулировать яркость во время работы.

    А вот с лампами- ситуация намного сложнее… Чтобы избежать нагрева в ЖК- телевизорах применяются газоразрядные лампы белого свечения (подобные всем нам известным «энергосберегающим»).

    Для их запуска требуется довольно большое напряжение: около 1000V. Затем для поддержки свечения требуется около 600V. Эти напряжения получают при помощи специального модуля- инвертора .

    По сути инвертор- это импульсный преобразователь напряжения. Так- же как и простой импульсный блок питания он имеет задающий ШИМ- генератор на микросхеме и выходной импульсный (в данном случае повышающий) трансформатор.

    Еще одной отличительной особенностью ЖК- телевизоров является наличие в ИИП дополнительного повышающего преобразователя.

    Их принято называть «допкондёр» или «допкондей». Сетевое напряжение, поступающее на ИИП при помощи импульсного преобразователя увеличивается до уровня приблизительно 380V.

    Такое конструкторское решение применено для того, чтобы снизить потребляемую нагрузку и облегчить работу инвертора.

    Ведь 380V проще увеличить до 1000V, чем сетевые 220V, да и сам инвертор в этом случае будет уже запитан не от сети, а от дополнительного ИИП.

    Печать

    Для того чтобы по внешнему проявлению той или иной неисправности телевизора иметь возможность определить неисправный каскад, важно представлять принцип действия ТВ приемника, назначение всех каскадов и их взаимодействие. Структурная схема телевизора позволяет быстрее понять функциональный состав телевизора по отдельным узлам и разобраться в порядке их взаимодействия между собой.

    Итак, структурная схема телевизора — это упрощенная принципиальная электрическая схема , в которой для удобства и наглядности функциональные узлы электрической схемы ТВ приемника, объединены в отдельные блоки с указанием их связей между собой.

    За прошедшие десятилетия развития, телевизионная техника претерпела значительные изменения. От черно-белых телевизоров, далее к цветным и наконец к цифровым жидкокристаллическим и плазменным панелям. Соответственно изменялась и структурная схема. Скорее не менялась, а дополнялась новыми блоками. Так в цветных телевизорах появились дополнительно: блок цветности, блок дистанционного управления, блок коммутации внешних устройств. В ЖК телевизорах, схема еще несколько усложняется.

    Эта схема относится не только к полупроводниковым черно-белым телевизорам, но и к ламповым.

    Цветные телевизоры

    ЖК телевизор

    Здесь схема еще больше изменилась, так как в основном используется цифровая обработка сигнала. Например COFDM — обработка данных с ортогональным частотным разделением каналов с кодированием, широко использующееся в телевидении. Аббревиатура LVDS — способ передачи сигналов на матрицу. Инвертор — вырабатывает напряжение для ламп подсветки (или светодиодов в телевизорах LCD и OLED) и регулирует его. Флеш память (ПЗУ) — это собственная память телевизора хранящая информацию о ваших настройках, встроенных функциях, управлении приемником. ОЗУ — оперативная память, участвует в обработке данных при работе ТВ. С остальным я думаю и так понятно.

    Структурная схема ЖК телевизора

    Нечто подобное будет и на структурной схеме плазменного телевизора.

    На принципиальной схеме для разделения на функциональные блоки применяется позиционные обозначения элементов конденсаторов, резисторов и так далее. Например, R805, C806, будут относится к блоку питания, а R705 и C706 к строчной развертке. Соответственные обозначения будут присутствовать и на плате шасси телевизора.

    Недавно меня спросили, в чём разница между ЖК и LED ? Отвечаю: и те, и другие (LCD и LED) относятся к жк (телевизорам с жидко-кристаллическим дисплеем). Конструктивно, отличаются от LCD телевизоров только способом подсветки ЖК-дисплея (или матрицы, кому как проще): вместо ламп используются светодиоды. Ну всё, статья закончена, пойду на пиво

    Ладно, ладно, есть чего рассказать об истории развития LCD телевизоров Начнём с самого определения аббревиатуры: LED TV (сокр. от Light Emitting Diode TeleVision) - светодиодный телевизор. Вообще-то, если честно, он выглядит примерно так:

    Это действительно LED или светодиодные экраны (панели), Вы часто их можете увидеть на главных улицах города, на футбольных стадионах или концертах. Основной их недостаток - "зернистость ", которая обусловлена размерами светодиодов. Сделать светодиод таким же маленьким, как пиксель на современной ЖК матрице, пока не получается, но, с большого расстояния, этой зернистости не заметно, а блочно - модульная конструкция позволяет собирать (как из кубиков) просто огромные экраны:

    Однако, мы уже привыкли, что LED TV - это нечто совсем другое, а именно: телевизор с жидкокристаллическим дисплеем, подсветка экрана которого осуществляется светодиодной матрицей (LED). Такой термин как LED TV был введен корпорацией Samsung в 2007 году для продвижения собственной линейки жидкокристаллических телевизоров, подсветка в которых осуществлялась не лампами, а светодиодами. Если смотреть чисто внешне - "LED" тоньше, чем "LCD", а вот качество изображения стало гораздо лучше

    Типы подсветок дисплея: Edge LED и Direct LED
    Давайте разберёмся в типах светодиодной подсветки дисплея. Прежде всего, она бывает прямой - Direct LED и торцевой - Edge LED . Хотите знать больше?, тогда рекомендую ознакомится ещё с одной небольшой статьёй: Edge LED и Direct LED .

    При прямой Direct LED или задней подсветке , светодиоды расположены по всей площади матрицы, равномерно освещая её через рассеиватель:

    Толщина LED телевизора уменьшается, но не на много, по сравнению с LCD TV, в которых применена ламповая подсветка. Вот как выглядит матрица с яркими белыми светодиодами:

    Торцевая или боковая подсветка Edge LED имеет свои плюсы и минусы. Рассмотрим принцип работы торцевой подсветки матрицы: светодиоды располагаются вверху и внизу, по бокам или по всему периметру матрицы, свет от них, через специальный светораспределитель, попадает на рассеиватель, а затем - на экран

    На данном рисунке можно увидеть, почему телевизоры с задней подсветкой Direct LED не могут быть такими же тонкими, как при боковой подсветке : ни лампы, ни светодиоды нельзя вплотную прижать к рассеивателю, необходимо расстояние для рассеивания светового потока Благодаря торцевому расположению, светодиоды не занимают места позади рассеивателя, следовательно, такая конструкция позволяет значительно снизить толщину матрицы и всего телевизора.

    Торцевая подсветка Edge LED более экономична (используется меньшее количество светодиодов), но и светит хуже (по этой же причине) Второй серьёзный минус - засветы . При минимальной толщине панели, получить идеальное светораспределение очень сложно, тонкий рассеиватель не справляется с такой задачей, в результате, на тёмных участках матрицы (без сигнала, к примеру) можно наблюдать светлые пятна (засветы), которые мешают комфортному восприятию изображения с экрана такого телевизора

    До сих пор, мы с Вами говорили о статической (то есть непрерывной, постоянной) подсветке, пора перейти к рассмотрению динамической Основное отличие динамического типа подсветки от статического в том, что светодиоды не горят постоянно, всё зависит от изображения. Светодиодная матрица поделена на группы, каждая из которых управляема, благодаря такому управлению можно регулировать яркость свечения светодиодов каждой группы, обеспечивая более чёткую цветопередачу и глубокий "чёрный цвет"

    Последним тип подсветки, который мы сейчас рассмотрим, является динамическая RGB прямая и боковая (торцевая) подсветка. При данном типе подсветки, используются светодиоды основных цветов: красного , зелёного и синего , а, иногда, ещё и белого (для лучшей цветопередачи)

    Диоды могут быть расположены "по одному" или вот такими сборками, когда в одном корпусе расположены светопередающие элементы всех основых цветов:

    Такая матрица способна не только "высвечивать" различные участки изображения с заданной яркостью, но и обеспечивать "засветку" нужной цветовой гаммой, в результате чего, изображения получается максимально "правильным", чётким и красивым

    Хоть и "экономит" толщину матрицы, но не даёт такого эффекта, так как может "высветить" только общую картину (они ж просвечивают матрицу на всю длину или ширину), поэтому, как мне кажется, лучше оставить этот тип подсветки для внешних эффектов, которые прекрасно дополнят общую картину

    Подведём итоги:
    - LED - тоньше, особенно при использовании торцевой подсветки, но есть опасность "засветов"
    - светодиоды имеют меньшее энергопотребление и не содержат ртути (в отличии от ламп)
    - светодиоды служат дольше ламп (теоретически, время скоро покажет)
    - в LED TV яркость, контрастность и чёткость изображения выше, чем у LCD (точнее, у ЖК матрицы с ламповой подсветкой)
    - за счет динамической подсветки достигается максимально правильная и насыщенная цветопередача

    В заключении:
    - при этой технологии, основанной на использовании органических светодиодов , такое понятие, как "подсветка ", вообще отсутствует, так как диоды основных цветов, формирующие изображение, расположены прямо "на экране" и светят сами, кроме того, такой телевизор можно будет и "в трубочку" свернуть, но это - уже другая история

    История человечества содержит целую череду замечательных открытий и изобретений. Телевидение - т. е. передача звука и изображения на огромные расстояния, по праву занесены в этот список.

    Какие же физические процессы лежат в основе передачи и воспроизведения телевизионного изображения? Кому мы обязаны рождению телевизора?

    Как рождалось телевидение

    Над созданием дальновидения трудились ученые разных стран на протяжении многих десятилетий. Но телевизор изобрели российские ученые: Б. Л. Розинг, В. К. Зворыкин и Григорий Оглоблинский.

    Первыми шагами, приблизившими мир к передаче изображения на расстояние, было разложение изображения на отдельные элементы с помощью диска немецкого инженера Пауля Нипкова, а также открытие фотоэффекта немецким учёным Генрихом Герцем. Первые телевизоры, работавшие на основе диска Нипкова, были механическими.

    В 1895 году человечество обогатилось двумя великими изобретениями - радио и кино. Это послужило толчком для поисков способа передачи изображения на расстояние.

    …Эра электронного телевидения началась с 1911 года, когда российский инженер Борис Розинг получает патент на передачу изображения на расстояние с помощью сконструированной им электронно-лучевой трубки.

    Переданное изображение представляло собой четыре белых полосы на черном фоне.

    В 1925 году ученик Розинга Владимир Зворыкин демонстрирует созданный им полноценный электронный телевизор.

    Но на дальнейшие исследования и выпуск телевизионных приёмников нужны были огромные деньги. Известный американский предприниматель российского происхождения Дэвид Сорнов сумел оценить это великое изобретение. Он вложил необходимую сумму для продолжения работ.

    В 1929 году совместно с инженером Григорием Оглоблинским Зворыкин создает первую передающую трубку - иконоскоп.

    А в 1936 году в лаборатории В. Зворыкина получил путёвку в жизнь первый электронный телевизор на лампах. Это был массивный деревянный ящик с экраном в 5 дюймов (12,7) см. Регулярное телевещание в России началось в 1939 году.

    Постепенно ламповые модели вытеснялись полупроводниковыми, а затем всего одна микросхема стала заменять всю электронную начинку телевизора

    Очень кратко об основных этапах работы телевидения

    В современной телевизионной системе можно выделить 3 этапа, каждый из которых выполняет свою задачу:

    • преобразование изображения объекта в серию электрических импульсов, называемых видеосигналом (сигналом изображения);
    • передача видеосигнала к месту его приёма;
    • преобразование принятых электрических сигналов в оптическое изображение.

    Как работает видеокамера

    Производство телепрограмм начинается с работы передающей телевизионной камеры. Рассмотрим устройство и принцип работы такого устройства, разработанного Владимиром Зворыкиным еще в 1931 году.

    Основной частью камеры (иконоскопа) является светочувствительная, мозаичная мишень. Именно на неё и проецируется изображение создаваемое объективом. Мишень покрыта мозаикой из нескольких миллионов изолированных серебряных крупинок, покрытых цезием.

    Принцип работы иконоскопа основан на явлении внешнего фотоэффекта - выбивании электронов из вещества под действием падающего света. Падающий на экран свет, выбивает из этих крупинок электроны, количество которых зависит от яркости светового потока в данной точке экрана. Таким образом, на экране возникает невидимое для глаза электрическое изображение.

    Здесь же в трубке имеется электронная пушка. Она создает электронный луч, который 25 раз в 1 секунду успевает «оббежать» мозаичный экран, считывая это изображение и создавая в электрической цепи ток, называемый сигналом изображения.

    В современных камерах изображение фиксируется не на светочувствительной плёнке, а на цифровой матрице, состоящей из миллионов светочувствительных ячеек - пикселей. Свет, попадающий на ячейки, вырабатывает электрический сигнал. Причем, его величина пропорциональна интенсивности светового луча.

    Для получения цветного изображения пиксели покрываются красным, синим и зеленым светофильтрами. В результате матрица фиксирует три изображения - красное, синее и зелёное. Их наложение и дает нам цветное изображение, фотографируемого объекта.

    Как видеосигнал доходит до телевизора

    Полученный видеосигнал имеет низкую частоту и не может распространяться на значительные расстояния. Поэтому в качестве несущей частоты используют высокочастотные э-м волны, модулированные (изменённые) видеосигналом. Они распространяются в эфире со скоростью 300 000 км/сек.

    Телевидение работает на волнах метрового и дециметрового диапазона, которые могут распространяться только в пределах прямой видимости, т. е. не могут огибать земной шар. Поэтому для расширения зоны телевещания используют высокие телебашни с передающими антеннами, Так, Останкинская телебашня имеет высоту 540 метров.

    С развитием спутникового и кабельного телевидения практическая значимость телебашен постепенно снижается.

    Спутниковое телевидение осуществляется за счёт целого ряда спутников, расположенных над экватором. Наземная станция передает свои сигналы на спутник, который ретранслирует их на землю, охватывая достаточно обширную зону. Сеть таких спутников позволяет охватить телевещанием всю территорию Земли.

    Кабельное телевидение предусматривает одну приёмную антенну, от которой телевизионные сигналы передаются к отдельным потребителям по специальному кабелю.

    Как работает телевизор

    Итак, в 1936 году в лаборатории В. Зворыкина был создан первый электронный телевизор с электроннолучевой трубкой (кинескопом). Конечно, с тех пор он претерпел много изменений, но все же рассмотрим, как происходит воспроизведение изображения в телевизоре с электроннолучевой трубкой.

    Именно в этой стеклянной колбе и происходит превращение невидимого электронного сигнала в видимое изображение. В его узкой части расположена электронная пушка, а с противоположной стороны - экран, внутренняя поверхность которого покрыта люминофором. Пушка обстреливает это покрытие электронами. Количеством электронов управляет поступивший в приёмное устройство видеосигнал. Электроны, попадая на люминофор, вызывают его свечение. Яркость свечения зависит от количества электронов, попавших в данную точку. Совокупность точек разной светимости и создают картинку. Электронный луч обстреливает экран слева направо, строчка за строчкой, постепенно спускаясь вниз, всего 625 строк. Все это происходит с огромной скоростью. За 1 секунду электронный луч успевает нарисовать 25 статических картинок, которые мы воспринимаем как движущееся изображение.

    Цветное телевидение появилось в 1954 году. Для создания всей гаммы цветов понадобилось 3 пушки - красная, синяя и зеленая. Экран, соответственно, снабдили тремя слоями люминофора соответствующих цветов. Обстрел красного люминофора из красной пушки создает красное изображение, из синей - синее и т. д. Их наложение создает всё многообразие цветов, соответствующих передаваемой картинке.

    Почему телевизоры «похудели»

    Описанные телевизионные приёмники с ЭЛ трубкой - это наше недавнее прошлое. На смену им пришли более изящные, плоские жидкокристаллические и плазменные модели. В ЖК телевизорах экраном служит тонкая матрица с огромной плотностью светящихся элементов (пикселей), позволяющих получить изображение хорошей чёткости.

    Пиксели плазменного телевизора состоят из микроламп, заполненных газами 3-х видов. Их свечение и создает цветную картинку.

    Цифровое и аналоговое телевидение

    До недавних пор основным форматом телевидения был аналоговый формат. Однако телевидение всегда быстро реагировало на новые технологии. Поэтому последние годы видеотехника перешла на цифровой формат. Он обеспечивает более устойчивое и качественное изображение, а также чёткий звук. Появилась возможность передавать огромное количество телеканалов одновременно.

    Полный переход на новый формат будет осуществлен к 2018 году. А пока можно пользоваться специальными приставками к старым телевизорам, и наслаждаться услугами цифрового телевидения.

    Телевизионная аудитория самая многочисленная в мире. Ведь это не только способ развлечь себя, но и возможность обогащения кругозора, не выходя из дома. Особенное значение в этом плане играет интернет-телевидение, позволяющее пользователям выбирать пакет каналов по своим интересам и просматривать прошлые телевизионные программы.

    Если это сообщение тебе пригодилось, буда рада видеть тебя